This article was downloaded by:

On: 29 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Phosphorus, Sulfur, and Silicon and the Related Elements

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713618290

Closo Boron Hydrides and Carbon Fullerenes

W. N. Lipscomb^a; L. Massa^b

^a Departments of Chemistry, Harvard University, Cambridge, MA ^b Hunter College, CUNY, New York, NY

To cite this Article Lipscomb, W. N. and Massa, L.(1994) 'Closo Boron Hydrides and Carbon Fullerenes', Phosphorus, Sulfur, and Silicon and the Related Elements, 87: 1, 125 - 128

To link to this Article: DOI: 10.1080/10426509408037446 URL: http://dx.doi.org/10.1080/10426509408037446

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Phosphorus, Sulfur, and Silicon, 1994, Vol. 87, pp. 125-128 © 1994 Gordon and Breach Science Publishers S.A. Reprints available directly from the publisher

Printed in the United States of America Photocopying permitted by license only

CLOSO BORON HYDRIDES AND CARBON FULLERENES

W. N.LIPSCOMB and L. MASSA

Departments of Chemistry, Harvard University, Cambridge, MA 02138

and Hunter College, CUNY, New York, NY 10021

The dual (reciprocal) relationship between closo boranes and carbon fullerenes, e.g. between $B_{12}H_{12}^{-2}$ and C_{20} , or between a proposed $B_{32}H_{32}$ and C_{60} , is extended to plausible multicage closo structures.

Key words: Boranes, fullerenes, multicage structures

INTRODUCTION

Preceding the discovery 1,2 of C_{60} there were several proposals for its possible existence and structure $^{3-6}$. The parallel dual or reciprocal 7 structure related to C_{60} is the proposed icosahedral $B_{32}H_{32}$ borane 8 (or ion). This relationship between fullerenes and closoboranes, which extends to other proposed polyhedral species 9 , has been based upon the Descartes-Euler equation 7

$$P + F = C + 2$$

which relates the number of vertices (points), the number of faces and the number of edges (curves). The replacement of vertices by new faces or of faces by new vertices is the dual (reciprocal) conceptual transformation of, for example, the C₆₀ to the B₃₂ polyhedron^{8,9} (Figure 1). The earlier comparison referred to almost spherical species. Here, we make a modest extension of less spherical molecules which do not have internal bonding contacts and which we conjecture will satisfy the Descartes-Euler equation.

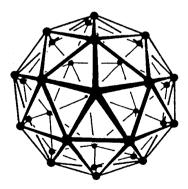


FIGURE 1 The proposed $B_{32}H_{32}$ species of icosahedral symmetry, the dual (reciprocal) polyhedron of C_{60} (buckminsterfullerene). The drawing shows the position of boron each of which has a hydrogen atom extending outward from the center of the polyhedron.

RESULTS AND DISCUSSION

Of the many ways that polyhedral fragments bind to make a larger molecule ¹⁰⁻¹³, we begin by examining the joining of near-icosahedral fragments (Table I, Figures 2 and 3).

TABLE I

Multicage polycarbon species and boron analogues

Carbon species	P	F	С	Symmetry	Boron species	P	F
C ₂₀	20	12	30	I _h	B ₁₂ H ₁₂	12	20
C ₂₀ C ₃₅	35	22	55	$\ddot{\mathrm{D}}_{5\mathrm{h}}$	$B_{22}H_a$	22	35
C47	47	30	75	D_{3h}	$B_{30}H_b$	30	47
C ₄₇ C ₅₆	56	36	90	T_d	$B_{36}H_c$	36	56

The number of hydrogen atoms may be less (a, b, c, in Table 1) than the number of boron atoms in certain regions where the polyhedral surface is less convex, or even concave as it is in the known $B_{20}H_{16}$ molecule 14 . Of course, the $B_{12}H_{12}$ is a dinegative

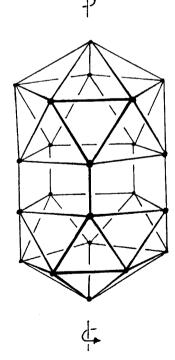


FIGURE 2 A B_{22} polyhedron of D_{5h} symmetry, the dual of a 35-vertex polyhedron ($Zr_{13}C_{22}$ proposal) having 5 square faces. Each vertex is connected to five others.

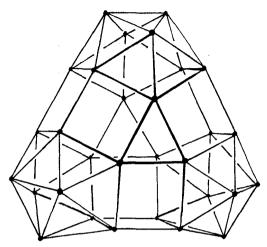


FIGURE 3 A B_{30} polyhedron of D_{3h} symmetry, the dual of a 47-vertex polyhedron ($Zr_{18}C_{29}$ proposal) having 9 square faces. A rotational distortion about the threefold axis gives fully triangulated faces and a dual which is a candidate for a C_{56} polyhedron of C_3 symmetry.

ion. However, we leave a study of the probable charges of the other boron species for later. The first three C_n species in Table 1 are like the polyhedra suggested for $Z_{13}C_{22}$ and $Z_{13}C_{29}$, whereas the C_{56} species differs from the $Z_{12}C_{35}$ analogue of a C_{57} which has internal bonds and does not yield a dual polyhedron satisfying the Descartes-Euler formula. Of course, this difference does not exclude the 57-vertex proposal as a reasonable suggestion.

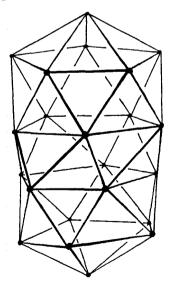


FIGURE 4 A rotational distortion of the B_{22} polyhedron in which the five square faces become two base sharing triangular faces. The dual polyhedron is a candidate for a C_{40} polyhedron of D_{5d} symmetry. Each of the ten nearly equatorial vertices is connected to six other vertices.

The boron polyhedra of the B₂₂,B₃₀ and B₃₆ types have square faces which, at least conceptually, can make a square-diamond collapse¹⁶ (framework rearrangement) as shown in Figure 4. This 22-vertex triangulated polyhedron has 40 faces, and its dual is candidate for a C₄₀. A similar twist about the threefold axes of the B₃₀ polyhedron gives a molecule which has 56 triangulated faces, and its dual is a possible C₅₆. The twist of the tetrahedral B₃₆ similarly to lower symmetry (T) yields 68 triangular faces, thus implying the dual C₆₈.

Since other types of condensed polyhedral species have been achieved by oxidative coupling 17-20, we suggest that this method be tried on the nido or conjuncto species of borane or carborane, either with single metal or small clusters of metal ions.

REFERENCES

- H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl and R. E. Smalley, Nature (London) 1. **318**, 162-163 (1985).
- K. Kratschmer, L. D. Lamb, K. Fostiropoulos and D. R. Huffman, Nature 347, 354-358 2.
- 3. E. Ozawa, Kagaku (Tokyo) 25, 854-863 (1970). (See Chem. Abstr. 74, 75698v (1971).)
- Z. Yoshida and E. Ozawa, Aromaticity, Kagakudojin, Kyoto, 1971, pp. 174-178. 4.
- D. A. Bochvar and E. G. Gal'pern, Dokl. Acad. Nauk SSSR 209, 610-612 (1973); Proc. 5 Acad. Sci. USSR 209, 239-241 (1973).
- I. V. Stankevich, M. V. Nikerov and D. A. Bochvar, Russ. Chem. Rev. 53, 640-655 6. (1984).
- Coxeter, H. S. M., Introduction to Geometry, Wiley, New York, 1961; Regular 7 Polytopes, Dover 1973.
- 8.
- 9.
- J. Bicerano, D. S. Marynick and W. N. Lipscomb, *Inorg. Chem.* 17, 3443-3453 (1978). W. N. Lipscomb and L. Massa, *Inorg. Chem.* 31, 2297-2299 (1992). J. H. Enemark, L. B. Friedman and W. N. Lipscomb, *Inorg. Chem.* 5, 2165-2173 10. (1966).
- W. N. Lipscomb, Inorg. Chem. 19, 1415 (1980). 11.
- 12. D. C. Finster, E. Sinn and R. N. Grimes, J. Am. Chem. Soc. 103, 1399-1407 (1981).
- W. N. Lipscomb, J. Less Common Metals 82, 1-20 (1981). 13.
- L. B. Friedman, R. D. Dobrott and W. N. Lipscomb, J. Am. Chem. Soc. 85, 3505 14. (1963)
- S. Wei, B. C. Guo, J. Purnell, S. Buzza and A. W. Castleman, Jr., Science 256, 818-15. 820 (1992).
- W. N. Lipscomb, Science 196, 373-378 (1966). 16.
- W. M. Maxwell, V. R. Miller and R. N. Grimes, J. Am. Chem. Soc. 96, 7116-7117 17. (1974).
- R. B. Maynard and R. N. Grimes, J. Am. Chem. Soc. 104, 5983-5986 (1982). 18.
- R. N. Grimes, R. B. Maynard, E. Sinn, G. A. Brewer and G. J. Long, J. Am. Chem. 19. Soc. 104, 5987-5992 (1982).
- 20. R. N. Grimes, Accounts Chem. Res. 16, 22-26 (1987).